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A plane harmonic sound wave is considered to be incident upon a rigid plane 
screen that contains a periodic rectangular array of circular or elliptical apertures, 
and a characterization is sought for the reflexion and transmission coefficients 
of the scattered waves when the relationships 

aperture dimension 4 spacing < wavelength 

apply. The problem is analysed with the help of an integral equation over a single 
aperture and, as a consequence of the determination of the leading terms in its 
asymptotic solution, some prior results for more general (that is, irregular) aper- 
ture spacing are confirmed and specific features of the interaction in the periodic 
arrangement are established. Similar formulations are devised and given atten- 
tion for the related problems in which (i) the screen is backed by a rigid infinite 
plane and (ii) the apertures contain rigid pistons capable of executing normal 
displacements compatible with an assigned and common impedance. A section 
is devoted to the solution, based on expansion of its kernel, for an integral equa- 
tion of the first kind with a plane circular or elliptical domain. 

1. Introduction 
A periodic rectangular array of apertures (having circular or elliptical shape) 

is located in a rigid plane screen, with the separation between neighbouring units 
thereof assumed to be large on the scale furnished by the dimensions of an in- 
dividual aperture. It is desired to study the reflexion and transmission properties 
of such a screen when irradiated by time-harmonic plane (sound) waves of wave- 
length large compared with the aperture spacing. 

The scattering problem thus posed can, without the aforesaid restrictions on 
the characteristic lengths, be reduced to a matter of solving a single integral 
equation of the first kind for a function that describes the normal velocity dis- 
tribution across a single aperture; although there is no available form of solution 
encompassing arbitrary relative magnitudes of the various lengths which figure 
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in the problem, an asymptotic solution appropriate to the chosen circumstances, 
namely 

aperture dimensions 6 spacing between neighbouring apertures < wavelength, 

is feasible. Estimates for the reflexion and transmission coefficients follow from 
these conditions and both duplicate earlier results obtained by Ffowcs Williams 
(1972) in the case of non-periodically distributed apertures and also furnish 
small correct,ions which depend in a complicated fashion on the twin spacing 
parameters of the periodic planar array. 

The pertinent asymptotic solution, which satisfies a version of the generally 
valid integral equation suited to the prevailing circumstances, is derived by a 
direct approach to the integral equation that differs from the one employed by 
Copson and that is, moreover, equally competent in the cases of circular or 
elliptical aperture geometry. Specifically, an orthogonal expansion for the re- 
ciprocal distance between any two points in the aperture, or kernel of the approxi- 
mate integral equation, affords a means of solving this equation through develop- 
ment, in terms of the orthogonal family, of the other functions occurring therein. 
A constant inhomogeneous term of the integral equation alone is relevant here 
and thus the solution takes an extremely simple form. 

The character of the reflexion changes appreciably when the perforated screen 
is backed by a parallel and infinite rigid plate, and likewise when the apertures 
contain close-fitting rigid pistons that can move normal to the plane of the screen 
in accord with a given average impedance. An asymptotic solution for the latter 
configuration proves to yield agreement with results found by Ffowcs Williams 
and additionally, supplies a small correction. 

The integral equation reformulation of a scattering problem for the perforated 
screen is given in 5 2 and its detailed solution is set out in appendix B. Reflexion 
by a perforated screen with an infinite rigid backing plane and by a periodic 
distribution of baffled pistons in an otherwise rigid plane are subsequently dis- 
cussed in $3 3 and 4. The Green's functions which enter the respective integral 
equations of the different problems are explicitly represented and approximated 
at  long wavelengths in appendix A. 

2. Reflexion and transmission of plane waves by a periodically per- 
forated screen 

A time-periodic plane wave is obliquely incident upon an infinite rigid screen 
that lies in the plane z = 0 and contains a periodic rectangular array of small 
circular or elliptical apertures with centres at  the points x = md,, y = nd,, where 
rn and n are integers (figure 1). The pressure variation of the incident or primary 
wave is given by 

(2.1) 

if the wave and screen normals have angular separation 19 and the wavenumber 
k = wIc expresses the ratio of the angular frequency w to the speed of sound c; 
as the time factor e-iot occurs linearly throughout it will be suppressed in the 
analysis that follows. 

pie-i@t = exp { - i k ( z  cos 8 + x sin 0) - iwt} 
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FIGURE 1. The co-ordinate system, incident wave pi and spacings dl and d, 
depicted for the circular aperture configuration. 

Our aim is to describe some aspects of the secondary pressure field scattered 
by the screen when the wavelength 27rIk is large and the aperture dimension a 
(radius or semi-major axis for the circular and elliptical shapes) is small compared 
with the spacing parameters d, and d,. Thus, if d, and d, denote the lesser and 
greater of d, and d,, respectively, the inequalities kd ,  < I and a/d, < I apply. 
Far from the plane of the screen, in particular, the scattered and primary waves 
are of the same type, whence 

pi+R,exp{-ilc(-xcosB+xsin8)) as z++oo, (2 .2)  

(2.3) T, exp { - ik(z  cos S + x sin S)} as z -+ - co, 

where R, and T, are complex constants to be found. 
If we express the total pressure fluctuation p ( x , y , z )  in the form 

the antisymmetry of the scattered component p -pi relative to the plane of the 
screen implies that +(x, y, z )  = - +(x, y, -2) and consequently attention can be 
restricted to the half-space z 2 0. The function $(x, y, z )  is there specified by the 
relations 

( V + k 2 ) $  = 0, z > 0, (2.5) 

a$/& = 0 when z = 0 on the rigid screen, (2.6) 
$ = -pi(x, y, 0) when x = 0 in the apertures, (3.7) 

together with a radiation condition stipulating an outgoing-wave behaviour for 
@ as z++co and an edge condition which limits the singularity of a$/az to one 
of inverse-square-root nature at  the rim of any aperture. In  accordance with the 
spatial periodicity of the incident wave and of the geometrical configuration, we 
seek a solution of the system (2.5)-(2.7) that has the property 

$(x -I- md,, y + nd,, X )  = exp [ - ikd,m sin 191 $(x, y, 2) .  (2 .8)  

Althongh our formulation indicates that the wavenumber is real, mathematical 
convenience results from assigning it a small positive imaginary part, say 
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k = k, + ik,, where k2+ + 0 ultimately, for such a strategem improves the con- 
vergence of sums that occur in the intermediate stages of the analysis. 

The boundary-value problem posed above is readily converted to a more 
succinct form, namely a single relation or integral equation for the function 
a$/az over the aperture centred at the origin; this transformation is effected 
through the use of a Green’s function G(r, r’) such that 

&kR, eikR- 
- 47rG(r, r’) = - + - , R2, = ( ~ - x ‘ ) ~ + ( Y - ~ ‘ ) ’ + ( z ~ z ’ ) ~ ,  (2.9) R, R- 

with a vanishing z‘ derivative at z’ = 0. On applying Green’s formula to the 
functions +(r’) and G(r, r’) in the half-space z’ >, 0,  it follows that 

a m 

c / A  G(x, yJ z ;  y’, O )  $(%’2 y’, O )  dx’d!/’, $(., $/> z, = > ‘ 9  (2.10) 
mn m, n= - m 

where the integrals are extended over all the apertures, A,, designating the one 
whose centre is located at  x = md,, y = nd,. If we define a periodic Green’s 
function, viz. 

m 

g(r, r‘) = C G(r,  y, z ;  x’ + md,, y’ + nd,, z’) exp [ - ilccE,m sin 01, (2.1 1) 

and enforce the corresponding property (2.8) of the regular wave function 9, the 
representation (2.10) simplifies to an integral over the singIe aperture A f AOo 
with centre at  the origin and becomes 

m,n=--a, 

a 
$(x, y, 2) = q x ,  y, 2; x’, y’, 0) -7 $(XI, y’, 0) dz’dy’, L az 

z > 0. (2.18) 

The normal velocity distribution a$/& across the aperture is fixed by letting the 
point (x, y, x )  tend to any point (x, y, + 0) in A and imposing the requirement (2.7), 
which yields 

%(x, y, 0; x’, y’, 0) exp [ ik (x -  x‘) sin 01 V(x’,  y’,) dx‘dy’ = - 1, (x, y) in A ,  s, 
with 

(2.13) 
(2.14) V(X, y) = exp [ikxsin 81 a$(x, y, 0 ) p z .  

As shown in appendix A 

whence, from (2.12), the wave function assumes the asymptotic form 

- iQ 
exp ( ik(z  cos 8 - x sin 8)), x -+ f co, (2.16) ’(” ” kd,d, cos 0 

with the amplitude factor 

Q = 1 V ( X ,  Y) 
A 

(2.17) 
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Reference to (2.4) and the fact that $is an odd function of z furnishes us, accord- 
ingly, with the expressions for the reflexion and transmission coefficients 

iQ T -  iQ R, = 1- 
kd,d2 cos 0'  ' - kd,d2 cos 19 

(2.18) 

in terms of the integrated value Q of the aperture distribution V ( x ,  y). 
To secure an analytical representation of V ( x ,  y) the basic integral equation 

(2.13) requires approximation. When kd, < 1 and a/d, < 1, the characterization 
(see appendix A) 

- 27r%(x, y, 0; x', y', 0) = l/B + c + o( 1) (2.19) 
is obtained, where 

R2 = (X - z ' ) ~  + (y - Y ' ) ~  

2in 2mrmd, 
and C =  kdld2cos0 f- d2 [ ?+log ( 4 2 )  - + 4mz=1 K o  (T)] 9 

(2*20) 

with the Euler constant y = 0.5771.. . , and K0(7) a cylinder function. If the esti- 
mate (2.19), which has uniform validity for all (2, y) and (x', y') in the aperture 
A ,  is employed in the integral equation and the phase factor set equal to unity, 
a first approximation q ( x ,  y) to the unknown function V(x ,  y) satisfies the equa- 
tion 

(2.21) 

The analysis presented in appendix B establishes that the integral equation 

has the explicit solutions 

for a circular aperture A of radius a, and 

(2.22) 

(2.23) 

(2.24) 

for an elliptical aperture A with semi-axes a and b.  Here 8 = (1 - b2/a2)t is the 
eccentricity and 

designates a complete elliptic integral. A comparison of (2.21) and (2.22) reveals 
the connexions 

whence 

8 

(2.25) 

F L M  
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in the circular case. On integrating (2.25) over the aperture we find that 
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Q, = 4an/(n + 2aC) (2.26) 

and therefore, from (2.18) and (2.20), the corresponding forms of the reflexion 
and transmission coefficients are 

where 
4 2mnnd, . (2.28) 

P(d,, d,) = P(d,, d,) = - y + log 1 4 [ + 4 _ , ~  K~ WI 
The version of (2.27) that holds when the small term aF(d,,d,) is omitted 

confirms the result found by Ffowcs Williams (1972) for a plane in which the 
apertures are densely clustered, with an average number N per unit area; for the 
contrast of formulae, a value N = (d1d2)-l is assigned in the periodic arrangement 
contemplated here. It would appear from the particular form of the structure 
factor F(d,, a,), which is linked specifically to the rectangular arrangement of 
apertures, that any improvement on Pfowcs Williams’ approximation for more 
general aperture distributions would involve a very complicated dependence on 
the spacing parameters. 

The estimate (2.27) for the reflexion and transmission coefficients of a per- 
forated or porous screen is applicable whatever the magnitude of the ratio 
4ia/(kd,d, cos 0) that occurs therein. If this quantity (and the effective porosity 
of the screen) is small, then an incident plane wave evidently undergoes nearly 
total reflexion; and if 4ia/(kd,d2 cos0) 3 I ,  corresponding to a large number of 
apertures per unit area or an incident wave close to the grazing direction, there 
is nearly complete transmission. Physical interpretations of both limiting cases, 
in terms of source and dipole layers, are discussed by Ffowcs Williams (1972). 

An effective impedance 2, of the screen, may be adopted in place of the reflexion 
coefficient R as a measure of its scattering quality and, in conjunction with the 
relationship 

R = (ZCOS~-PC)/ (~COS~+/IC) ,  

where p is the air density, there follows a small wavenumber expansion 

Z / p  = sec0-i(kd1d,/2a) ( l + a F ) + o ( k d , ) .  (2.29) 

For apertures of elliptical shape the counterparts of (2.25) and (2.26), namely 

( C Q l )  1 (l-;-$)-i 
v,(x,y) = I--  - 

277 bK(s) 
(2.30) 

and Q, = 277a/(K(s) +aC) = 4&7/(77 + 2GC), (2.31) 

make it evident that the reflexion coefficient R, in (2.26) carries over if the circu- 
lar radius a appearing therein is replaced by an equivalent magnitude 

ii = 77a/2K(e), (2.32) 
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which varies with the eccentricity in a definite manner. It is necessary to assume, 
of course, that the major axes of the ellipses are parallel, so as to preserve the 
periodicity of the configuration, though the above analysis remains valid for any 
orientation of the ellipses relative to the x and y axes in the plane of the screen. 

To characterize the excitation in the neighbourhood of the apertures we con- 
sider the circular shape for simplicity and denote by F(x) the harmonic function 
that vanishes a t  infinity and has the normal derivative 

(2.33) 

in the plane z = 0. Reference to the expression (2.25) for the normal aperture 
velocity reveals that the pressure distribution $ near A has (apart from incident 
and reflected wave components) a locally incompressible nature, with the repre- 
sentation + Slw4) (2.34) 

where the scaling constant S,, which accounts for the interactions between aper- 
tures, is given by 

8, = 1 - CQl/2n N (1 + 4ia/lcd,d2 cos O)-l. (2.35) 

A reciprocal argument may be used to infer that the far field at a distant 

@(x; x f )  N S,F(x’) ei“/( - 4nr) 

It follows that a quadrupole source of strength Tii situated near A induces a 

point x(r,  8) excited by a source at X‘ takes the form 

(2.36) 

together with incident and reflected waves. 

(2.37) 

and this is considerably greater than the incident and reflected waves, of order 
k2eikr/r, when ka is small. 

The potential $ near the (m, n)th aperture is obtained by multiplying 4 by 
exp ( - ikd,m sin 0 ) ,  and the field corresponding to a compact distribution of 
quadrupoles can be inferred by direct superposition. In  particular, a compact 
region of turbulence near the apertures is acoustically equivalent to such a 
quadrupole distribution and has a scattered field that is much greater than the 
direct and specularly reflected fields. 

3. Reflexion by a perforated screen with an infinite rigid backing plane 
If the periodically perforated screen, whose geometry is that described in 

$2, has a parallel and rigid infinite plane backing at z = -d, (figure Z), full re- 
flexion of an incident plane wave is to  be expected; the adaptation of our prior 
analysis which suits these circumstances and brings out the changed aspect of 
reflexion is now undertaken. 

We consider, as before, an obliquely incident plane wave such that 

p$ = exp { - ik(x cos O + x sin O ) }  
8-2 
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I 

FIGURE 2. The geometry of the backed screen. 

and again impose a periodicity requirement of the form 

on the complete wave function. To recast the boundary-value problem in terms 
of an integral equation over a single aperture A centred a t  the origin, the total 
pressure fluctuation p ( x , y , z )  on either side of the perforated screen is first 
expressed by means of its normal (i.e. z )  derivative at this aperture; then, the 
requisite continuity of pressure at the plane of the aperture leads to the desired 
integral equation for aplaz. 

p(x+md,,y+nd,,z) = exp[-ikd,msinO]p(x,y,z) (3.1) 

In the domain z > 0 an appropriate representation is 

p ( x ,  y, 4 = pi@, Y, 4 +Pi(% Y, -4 
a 

C(x ,  y, 2 ;  x', g', 0) --p(x', y', 0) dx'dy' 
m.n= - co a x i  

W 

+ Ln a 
= pi(%, y, 2) +Pi@, Y, -2) +I g@, Y, 2; x', y', 0) p ( x ' ,  y', 0) dx' dy', 

A 
z > 0, (3.2) 

where Q and $9 are given by (2.9) and (2.11), respectively. The asymptotic 
approximation (2.15) of '3 reveals that 

p-pd N R,exp{ -ik( -zcosO+xsin@) as z + +m, (3.3) 
with R, = 1 - iQ,ILdld2 cos 8, (3.4) 

Q, = exp [ikx sin 01 - ax d x d y  ZE W ( x ,  y) d x d y  (3.5) 
!A 

where 

is a constant to be determined. 
In the region - d3 c x < 0 between the screen and backing plane, we have 

where the Green's function G,, whose z' derivative is zero on each of the planes 
z' = 0 and z' = - d,, is fashioned by image summation of simple sources and takes 
the primitive form 
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Using the periodicity condition (3.1) and the definition 

03 

gl(x, Y, 2; x’, Y’, 0 )  = E Gl(x, y, z ;  x’ + md,, y’ + nd2, 0) exp [ - ikd,m sin e] 
m,n=--m 

(3.8) 

gives (3.9) 

whence the equivalence of (3.2) and (3.9) a t  all points of A yields the basic integral 
equation 

p(x,  y, z)  = -S, gl(x, y, z ;  x’, y‘, 0 )  aP dx‘dy‘, - d, < z < 0, 

xexp[ik(x-z’)sin8] W(x’,y‘)dx’dy’ = -1 ,  (x,y) in A ,  (3.10) 

W(x,  y) = exp [ikx sin 81 ap(x, y, 0)jaz. (3.11) 

Evidently, (3.10) is similar to (2.14) and may be dealt with in a corresponding 
manner; thus, on availing ourselves of an estimate secured in appendix A, namely 

where 

for 

$(S++l} = - ( 1 / 2 n ) ( l / R + D ) + O ( I ) ,  R2 = ( X - ~ ’ ) ~ + ( Y - $ ) ~ ,  (3.12) 

in n D =  
kd,d, cos 6- k2d,d,d, cos2 8’ 

t’he approximate version of the integral equation (3. 10)’ 

(3.13) 

(3.14) 

duplicates a previously encountered one, equation (2.21).  This implies forthwith 
(through the replacement of C by D in (2 .26)  and (2 .25) )  that 

and W(x,  y) = ($n + aD1-1 (a, - x2- y2)-t (3.15) 

in the case of circular perforations. The reflexion coefficient supplied by (3 .4 )  
becomes, when use is made of (3 .14) ,  

(3.16) 

and its validity is predicted for small values of kd,  and a/&. Higher order 
corrections to (3.16), which depend on the arrangement of perforations, are left 
unspecified here, as well as the corrections for eccentricity of the apertures. 

In  keeping with our original expectations it is seen that 1R,( = 1 and that 
R, + I when d, -+ 0. On the other hand, if the wavenumber k cos 6 satisfies the 
‘resonance ’ condition 

2a = (k cos 8)2dld,d, (3.17) 

for a cavity of volume d,d,d,, then R, = - 1 and the reflexion is like that of a per- 
fectly aoft screen. 

2a - kzd, d2d3 C O S ~  0 + Siakd, cos 0 
- 2 a -  k2d,d,dac~~2e-2ialcd,cos8’ 

R -  
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supplies the representation for pressure variation near A : 
Leaving aside incident and reflected waves, a previously used line of reasoning 

1, S , S ( X ) ,  (3.18) 

where F(x) is the harmonic function specified by (2.33), and 

2a )-’, (3.19) 
2aD -’ 2ai x -  - ( 1+- 7~ ) (1+kd,d2cos0-~zd,d,d,eoa”8 

from (3.15) and (3.13). 
The far fields due to a monopole or quadrupole source near A are then given by 

formulae similar to (2.36) and (2.37), with XI replaced by 8,. In  particular, if 
the wavenumber satisfies the resonance condition (3.17), then the factor S ,  has 
the large value 

In the original plane-wave diffraction problem this condition implies that the 
local field, and wave amplitude between screen and backing plate, is large. 

X2 N - ikd,d2 COB 0 1 2 ~  = - i (d Id2 /2a  d,)*. 

4. Reflexion by a periodic distribution of baffled pistons 
A related problem discussed by Ffowcs Williams (1972) envisages aperture- 

filling rigid pistons that are constrained to move in the normal or x direction in 
accordance with an average impedance 2,. The boundary condition at each pis- 
ton, which may be regarded as a definition for the impedance, is (denoting the 
piston velocity by v) 

- L J p d x d y  = Z,v = -- 2, aP 
nu2 a+~ ax’ 

andin termsofthefunction$(x, y,z) = p ( x , y , z )  -pi(x,y,z) -p&,y,-z),wehave 

{2Pi(x, Y, 0) + $(x, Y, O ) }  dx dY, on A,,, (4 .2)  

K = ikppc/Z, ma2. (4.3) 

all. - = - K  
ax 1 A m n  

where 

The boundary-value problem for $ stated in $ 2  admits an exact solution when 
t,he aperture boundary condition (2 .7 )  on the wave function itself is replaced by 
the specification (4.2) for its normal derivative. Let 

and let 

J (ka sin 0 )  
p i ( x , y ,  0 ) d x d y  = nu2 

’ 
@a sin 8 ’ 

r 

designate a constant whose value is at present unknown; then it follows from 
inserting (4.2) into the representation 

a 
g(x ,  Y, z ;  2’2 $9 0) g $@‘, Y’, 0) dx’ dY’, 2 > 0, (4.6) 

n 

that P(x, y, z )  = - K ( 2 E  + P )  J g(x ,  y, z ;  x‘, y‘, 0 )  dddy ‘ ,  z 0, (4.7) 
A 
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and the magnitude of F is determined by integrating (4.7) over A .  We thus 
obtain 

F = -2K&I/ ( I+IK) ,  (4.8) 

where I = 3 ( x ,  y, 0; x’, y‘, 0) dxdydx’dy’, (4.9) 
A 

and the solution of the boundary-value problem, embodied in the wave function 
(4.7), is now complete. 

Since the pressure far field assumes plane-wave form 

2iKF4 
exp { ik(z  cos 8 - x sin e)} as x + 00, (4.10) @ - ( x ~ ~ , z )  * ka,a,cose(i+m) 

an exact expression for the reflexion coefficient R3 may be obtained, viz. 

A n  asymptotic estimate for R,, when kd,  < 1 and a/d, 
(4.11) on substitution of those appropriate to Pi and I ,  which are 

R3 = 1 -21cpc~~/kd ,d2cosB(~a2Z,+ikpcI) .  (4.11) 

1, follows readily from 

Fi = na2[ 1 + O ( k ~ a ) ~ ]  

and 

= - ( I / % )  ($%ra3+Cn2a4) +0(a3a/d,), 

respectively. If the reflexion coefficient is written as 

(1 + O(Ea)2) 
z cos 8 - pc 

3 - zcose+pc 
R -  

the effective impedance Z of the plane with baffled pistons is 

where the last term contains the structure factor P specified in (2.28) and fur- 
nishes a small correction, when a/d, < l, to the result obtained by Ffowcs 
Williams (1972) for arbitrarily spaced pistons. 

Appendix A. The Green’s functions and their approximations 
The function 9 ( x ,  y, z ;  x‘, y’, 0) defined by 

q x ,  y, 2 ;  x’, y’, 0) 
1 a) 

x exp (ikR(x, y, z ;  x’ + md,, y’ + nd,, 0)) 
R(x,  y, z ;  x’ + md,, y’ + nd,, 0) 

exp [ - ikd,  m sin 01, = _- 
2n m, 12= - a 

(A 1) 
where (A21 
can, through a two-fold use of the Poisson summation formula, be recast in the 
alternative form 

R’(x, y, X ;  x’, y’, 0) = (X - x’)~ + (9 - y’), + x2,  

%@, y, z ;  x‘, y‘, 0) 
exp (i(x - x’) ( - k sin 0 + 2nv/d,) + i(y - y‘) 2np/d, + ~ C Z } ~ ~ ,  c (ksin 6’ - 277 v/d,)2 + ( 2 ~ p / d , ) ~  + C2- k2 

(A 3) 
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with a path of integration that is indented above the pole on the negative real 
axis and below the pole on the positive reaI axis. 

For large positive values of x ,  i t  is convenient to deform the path of integration 
into the upper half of the 6 plane and to express the integral as a sum of residues. 
There is a contribution from one pole at 6 = k cos 8 on the real axis, corresponding 
to v = p, = 0; the other values of v and p, give rise to poles on the imaginary axis 
and provide residues that are exponentially small when z is large, with kd, and 
kd, < 1. Thus the only propagating mode is characterized by v = p, = 0 and 

$(x, y, z ;  x’, y’, 0) N - i exp ( ik(z  cos 8 + (x- x’) sin B)}/kd,d, cos 8 

as z-f +oo. (A4) 

We require also an asymptotic estimate, for small values of kd, and ald,, 
of the function 

B(x, Y, 0; X’, Y’, 0) 

exp { i k R ( x ,  y; x’, y’)) 1 O0 

Z’ exp { ikR(x ,  y; x’ + md,, y’ + nd,)} -- - _ -  
2nR(x, y; XI,~’) 2~7ra,n=-m R ( x ,  y; ~ ’ + m d , ,  y’ +%a,) 

x exp[-iM,msinO], (As) 

where 

and the symbol 2‘ denotes a double sum exclusive of (m,n) = (0 ,  0) ,  with both 
the points (x, y) and (x‘, y’) lying ina  circular aperture A .  Since ka < 1 anda < d,, 
it follows that the first term of (A5) may be replaced by - 1/21rR and that the 
particular values x = x’ = y = y’ = 0 may be assigned in the double sum; thus 

A,(%, y; x’, y’) = (x- x‘), + (y - y’), 

1 
g(x,y,O;~’,y’,O) = - -+Al+A,+o( l )  2nR as ka- t  0 (A 6) 

with 

m90 

The explicit evaluation of (A 7 )  yields 

A ,  = (nd,)-,log (1 - e ikda)  

- (nd,)-l{lOg (kd,) - +in} as M, + 0 (A 9) 

and as far as A ,  is concerned, we find it convenient to identify the sum over all n 
with the wave function a t  (md,, 0,O) arising from point sources on the y axis at 
y = 0, & d,, f 2 4 ,  .. .. An aggregate of this type comprises the image system 
appropriate to a simple source at the origin in a parallel-sided duct with rigid 
plane boundaries at y = k id,. Hence the sum 
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represents a specific value of the Green's function 8(x, y, x )  for the duct configura- 
tion, which satisfies the equations 

(V2 + k2) B = 2 6 ( ~ )  6(y) S ( Z ) ,  
( A l l )  I ai2lap = o at y = Bd,. 

and a radiation condition a t  infinity. 
The solution of such an axially symmetric waveguide problem can be achieved 

in elementary fashion, on separating variables in a cylindrical polar co-ordinate 
system (r ,  y), r2 = x2 + z2, and it is found that 

with the conventional designations for a Hankel function Hi1) of the first kind 
and a modified Bessel function KO. From (As) and (A 10) we next obtain 

i "  
dam=1 

A ,  = -- z H&1)(mkd,)cos(mkd,sin8) 

-- 4 5 KO [ (7 - k2)' md,) cos (mkd, sin 8 )  

i "  
d2m=1 

Td2Tn,n=l 

N -- 2 H&l)(mkd,) cos (mkd, sin 8 )  

as kdl,kd2-+0. (A12) 

Since the sum of Hankel functions has the alternative form (cf. Ryzhik & Grad- 
shteyn 1965, $8.522) 

W kd, 1 1 2 Hh,)(mkd,) cos (mkd, sin 0) = - 
m- 1 

1 I + [ (( 2m77 - kd, sin 8)s - k2d;)i 2m77 { (2mn + kd, sin 19)~  - k2d;)f 2m77 
-- 1 m 

m= 1 
- 

(A13) 

where y = 0.6771 ... is the Euler constant, we deduce, after collecting together 
the results (A 6)-(A 13), that 

1 i 
B(x, y, 0; x', y', 0) = - -- - $P(di, 4) + 4 1 )  (A 14) 2nR kdld2 cos 8 

as kd, and a/d, -+ 0, with 
m 

Ku(I?nnn2)]. (A15) 

As the structure factor F is independent of the angle of incidence 8 and the 
Green's function B is obviously symmetric with respect to the spacing parameters 
d, and d, when 0 = 0, it  follows at once that 

m, d,) = w,, 4). (A 16) 
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The double sum in (A 15) is rapidly convergent when d, > d, and for d, < d, it 
is advisable to exploit the symmetry property (A 16) by interchanging the para- 
meters. 

A related Green's function gl(x,  y, z ;  X I ,  y f ,  z'),  which presents itself ($4) if the 
perforated screen has a backing plane, takes the form of a triple sum, in accord- 
ance with (4.7) and (4.8), namely 

P. G .  Leppington and H .  Levine 

B,(x, y, z ;  x' ,  y f  , 0) 
1 

- - -- c exp {ikR-(x,  y, z ;  x f  + md,, y' + nd,, 2 4 ) )  
exp [ - ikd, m sin 01, 

2r l ,m ,n=-m R-(x ,~ , z ; x '  -t-md,,y' +nd2,2Zd3) 
(A 17) 

where RY(x,y ,x;  x ' , y f , z f )  = (x -x f )2+ (y-yf)2+(z-z ')2.  ( A W  
The procedure just described in connexion with 9 ( x ,  y, x ;  x', y', 0) also enables 
us to obtain an asymptotic estimate for g1(x, y, 0; X I ,  y', 0 )  when kd,  and al l< 
are both small. Thus, we begin by isolating the 1 = m = n = 0 term in (A 17)  and 
thereafter substituting for the exact representation 

which rests on the premise that ka and .Idl, , remain small compared with unitr. 
A rearrangement of the triple sum, giving 

g,(x,y,O; x',yf,O) N -1 /27~RfB ,+B, ,  

where 

and 

m+O 

enables the desired characterization of Bl to be directly inferred from that 
previously given for A ,  + A,, on replacing d, with Zd3 and setting 8 = 0. Accord- 
ingly, B, = -il(2hd,d3)+0(1) (A 22) 

when kd,,3 < 1, and there remains only the determination of an analogous 
estimate for B,; adhering to the prior style of calculation, the summand of (A 21)  
is regarded as a wave function at (md,, 0 , O )  with source at (0, nd,, 2Zd3) and the 
double sum over 1 and n is viewed in terms of an image array which corresponds 
to a simple source at  the origin in the presence of rigid walls at 

y = f id , ,  z = &a3. 
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It follows that the sum 

may be found after particular arguments are adopted in the Green’s function 
F,(x, y, z )  of a rectangular duct, specified by the differential equation 

(V2+ k2) Fl = 26(x) 6(y) 6(z)  

and the boundary conditions 

aF,/ay = 0 when ZJ = -F. +d,, 

aFl/8z = 0 when z = fd,. 

A representation of Fl, arrived a t  through separation of variables, yields 

ez‘klmld, 1 

2ikd2d, 2d2d3 l,n=-m 
(4n)*(O,O) 

exp { - (4n2n2/dg + Z2n2/d; - kz)t Imldl) 
(4n27rr2/d$ + l2n2/d; - k2)t 

Fl(mdl, 0,O) = - -- c 
W 4 )  

and thus, on application of (A 21), (A 23) and (A 24),  i t  follows, in the limit k: -+ 0, 
that 

m 1 
B2 N ~ exp[ik)mldl-ikd,msin8] +O( i )  

2ikd,d3,=-, 
m+O 

when kd ,  is small. Finally, (A 19), (A 22) and (A 25) combine to reveaI that 

1 1 
%,(X, y, 0; x’, y’, 0) = - - +0(1). 

27rR + k2 d, d,  d, cos2 0 

Appendix B. Solution of an integral equation by expansion of its kernel 
The integral equation on a plane domain of finite area A 

( l / R ) f ( x ’ ,  y’) d d  d?)’ = g ( X ,  y), R2 = (X - x‘), + (y -y’),, (B 1) &jA 
which for g = constant has previously been found to be relevant to scattering 
from a perforated screen, also characterizes the electrostatic charge density 
f ( ~ ,  y) on a plane disk A a t  which the potential takes the assigned value g(x, y), For 
the circular disk, aptly describedwith plane polar co-ordinates, methods of solving 
the equation have been presented some time ago (Serini 1923; Sbrana 1924)t 
and rediscovered more recently (Copson 1947); they rely on special integral 
representations of the kernel and thereby restate the problem in simpler and more 
manageable terms, requiring only the known solutions of a pair of one-variable 
Abel-type integral equations. In  the following, we shall develop an alternative 

j- It may be noted that these references are absent from the extensive bibliography 
compiled by Sneddon (1966). 
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technique that is applicable to an elliptical domain A (x2/a2 + y2/b2 = 1) as well, 
and thus surpasses in scope the ones hitherto available. 

New variables (8,$) are introduced by the transformation 

x = asin8cosq5, y = bsin8sin4 (B 2) 

so that the domain A is given by 0 < 8 6 +n, 0 < q5 6 2n, and the integral equa- 
tion (B l)  takes the form 

for (8,$) in the domain A ,  where 

R2 = a2(sin 8 cos q5 - sin 8' cos q5')2 + b2 (sin 8 sin q5 - sin 8' sin q5')*. (B 4) 

In an obvious notation f(8,$) and g(8,$) are used to denote f(x, y) and g(x, y) 
written in terms of 8 and $. 

It is expedient to extend the domain of integration to include all 8 from 0 to ?T ~ 

by defining a new unknown function 

Similarly the region of definition of g(8, q5) is extended by defining 

g(8; $) = g(n- B,#)  for G 8 G ?T. (B 6) 

Thus F(0, q5) and g(O,q5) are even functions of 8 - in. Now it is readily seen from 
(B 4) that the kernel function 1/R is an even function of both 6' - +n and 8' - +m, 
and this ensures that the integral equation (B 3) can be written as 

for all ( O , $ )  on the extended domain D; 0 < 8 < 7 ~ ,  0 < q5 < 271. An advantage 
gdned from the formulation of the integral equation (B7) on the domain D is 
that its kernel 1/R can be expressed conveniently as a series expansion of func- 
tions with certain orthogonality properties in D, as is now shown. 

The double Fourier integral 

provides a suitable form with which to begin the analysis. The transformation 

6 = @/a) cos @, 7 = @/b) sin @, (B 9) 

together with (B 2) leads to the result 

1 a@ 
[@/a) cos2 CD + (a/b)  sin2 @]* 

J - - a ~  
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The exponential factors in (B 10) are next given individual expansions which 
stem from the general and classical result 

exp (ip cos 0)  = exp {ip(cos a cosp + sin a sin /? cos 7)) 
m 

1=0 
= x (2Z+ 1) iY2(p) 6(cos a), 

where j,(z) is the spherical Bessel function 

3x4 = (+x)+ 4+&% ( B W  

and 8 (COB 0)  is the Legendre polynomial whose addition theorem has the form 

? n = z  (1 - m) ! 
,=-z(I+m)! 

&(cos0) = 2 - Pp (cosa) Py(cosB) eimy. 

It is convenient to work with the renormalized Legendre functions 

Pl"(2) = (Z+*)4{(Z-m) !/(Z+m)!)+Py(x), (B 14) 

which satisfy the orthogonality conditions 

where arnrn. is the Kronecker delta. 

property 
The spherical Bessel functions j, of formula (B 12) have the orthogona,lity 

/ J.l(P)J.Z,(P) dP = 4 2 1  + l ) - l s l r .  (B 16) 
-m 

On substituting (B 13) and (B 14) into (B 11) and setting a = 8, /? = &r and 
y = q3 - a, it  is seen that the first exponential factor in the integral (B 10) may 
be written as 

m 

exp {ip sin 8 cos (q3 - a)] = 2 C 2 iY,(p) PT(0) ~ ~ ( C O S  0) eim@-@), (B 17) 
L o r n = - 1  

and by complex conjugation the second exponential factor is 

m 1' 

exp { - ip  sin 8' cos (+' - a)} = 2 2 x i-l'jJp) P ~ ' ( o )  P~'(cos 8') e-im'(+'-@), 
Z'= 0 m'= - 1' 

(B 18) 

When (B 17) and (B 18) are substituted into the integral (B 10) and use is 
made of the orthogonality properties (B 15) and (B 16), it is found that 1/R has 
the representation . 
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It is noted here that C(1, m, m’) is zero if either 1 - m or 1 -m’ is odd, since the 
respective functionsPy(0) and Pp’(0)  (B20) are zero under these conditions. Thus 
the sums with respect to m and m’ in (B 20) are taken only over even values of 
1-m and 1-m’; this reflects that fact that 11R is an even function of both 
8-$nandO’-$n-. 

The series expansion (B 19) for l / R  now leads to a solution of the integral equa- 
t’ioii (B 7) .  Guided by (B 19)) we write F(8,  $) and g(8,$) in the similar forms 

and 

where the g,, are known in principle since g(8, $) is known, and the coefficients 
arm are to be found. The restriction to even values of m - 1 in (B 21) and (B 22) 
results from the fact that F and g are even functions of 6 - &r. Substitution of 
(B 21) and (B 22) into the integral equat,ion (B 7) and use of the orthogonality 
relation (B 15) leads to the result 

1 

ml= -1  
+(ab)t c %,lQ(Z,m,T) = g,, ( - 2  < m < 1) .  (B23) 

ni, - 2 even 

For each fixed value of I, the system (B 23) is an (I + 1) x (1 + 1) system of equa- 
tions for the constants al, --1, al, --2+2, . , . , q,. 

The case of particular interest in this work is that in which g = constant = a. 
Thus the expansion (B 22) has 

go, = a, g1m = 0 for ( I ,  m) =I= (0, 0)) (B 24) 

(B 25) 

and the system (B 23) reduces to the trivial one 

~ ( a b ) ~ a o o C ( O ,  0,O) = a, 
with alni = 0 for (1, m) += (0,O).  Now C(0 , 0,O) is easily shown from its definition 
(B 20) to have the value 2(b/a)tK(e), where K denotes an elliptic integral and 
6 = (1 - b2/a2)*. Formulae (B 25)) (B 21) and (B 5) show that the solution of the 
integral equation (B 1) is given by 

as previously quoted in equation (2.24). 
Another case worthy of special mention is that in which g is a polynomial of 

degree M in x and y ;  thus g is a polynomial in cos $ and sin 9, and the sum (B 22) 
for g involves values of m absolutely bounded by N .  Since the coefficients a,, 
of the system (B 23) must also have lml < M i t  follows that F(8, q5) = cosOf(8, q5) 
is also a polynomial PN(x, y) of degree 2 M .  Thus 

f = pw(x, y) sec 8 = P,,(x, y) (1 - xZ/a2-- y2/b2)-4, 

and this is a simple proof of the theorem of Galin that is referred to by Sneddon 
(1966). 
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